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Chapitre 1: Equilibre intérieur d’un solide
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Ayant pour objet fondamental l’étude des corps solides déformables, la mécanique
des structures ou des matériaux se propose deux buts principaux, en général
indissolubles, le calcul :

• des efforts intérieurs ou contraintes, provoqués par les forces extérieures

• des déformations entraînées par les efforts intérieurs.

La mécanique des structures, appelée naguère résistance des matériaux, poursuit un
objectif essentiellement utilitaire assurer la sécurité et le bon fonctionnement des
constructions, tout en guidant le choix des solutions les plus performantes.

On est souvent conduit à des simplifications draconiennes, basées sur l’analyse de
mesures ou, quand l’expérimentation est impossible, sur des comparaisons avec des
cas similaires dont la solution est connue.

La théorie de l’élasticité poursuit les mêmes buts que la mécanique des matériaux,
mais par un cheminement mathématique rigoureux et sans le recours à des
raisonnements qualitatifs basés sur l’expérience.

Généralités
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La théorie de l’élasticité permet seule de donner à certains résultats la généralité
nécessaire et de juger de la valeur des hypothèses simplificatrices faites en
mécanique des matériaux

La théorie de l’élasticité et la mécanique des structures sont fondées toutes deux sur
la loi de Hooke qui suppose une proportionnalité parfaite entre contraintes et
déformations. Un corps qui suit la loi de Hooke est dit parfaitement élastique.

La mécanique des matériaux étudie également certains solides ne suivant pas la loi
de Hooke ou pour lesquels les contraintes dépassent les limites du comportement
élastique. Elle débouche ainsi sur la théorie de la plasticité.

Cette théorie présente des difficultés mathématiques considérables en raison de la
non-linéarité et surtout des phénomènes d’hystérèse intervenant dans les lois de
comportement.

La sécurité d’un élément de construction ne dépend pas seulement du niveau
maximum des contraintes et déformations mais encore de la façon dont ces
grandeurs varient dans le temps. Cette nouvelle préoccupation fait l’objet des
théories du fluage et de la fatigue.

Généralités
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• Hypothèse de continuité : bien que les solide soient constitué d’atome, l’étude du
comportement à l’échelle macroscopique n’est possible qu’en considérant le
solide comme un corps continu.

• Peut-on considérer les échantillons ci-dessous comme des matériaux continus?

Hypothèses fondamentales
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• Hypothèse d’homogénéité : on considérera que la matière est homogène, c’est à
dire que ses propriétés mécaniques sont les mêmes en tout point du solide
considéré. Dans le cas contraire on peut découper le solide en plusieurs parties
considérées comme homogènes et étudier l’interaction de ces parties entre elles

• Peut-on considérer les échantillons ci-dessous comme des matériaux
homogènes?

Hypothèses fondamentales

micro vs macro
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• Hypothèse d’isotropie : nous admettrons que ses propriétés mécaniques sont
identiques dans toutes les directions autour d’un point

• Peut-on considérer les exemples ci-dessous comme des matériaux isotropes ?

Hypothèses fondamentales
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• Hypothèse de proportionnalité : dans un solide continu, les déformations sont liées
en tous points aux contraintes par des relations linéaires et homogènes.

Hypothèses fondamentales
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• Hypothèse des petites déformations : les déformations ont une influence
négligeable sur la position des points d’application ou sur la direction des forces
extérieures.

Hypothèses fondamentales

RA = ?

MA = ?
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Grande déformation d’une poutre encastrée soumise à de la flexion

D = 50 mm

 = 1 m

Ecaoutchouc = 0.01 GPa

P = 40 N

 𝛿𝛿 = 64 𝑃𝑃3

3𝐸𝐸 𝜋𝜋 𝐷𝐷4
= 4345 𝑚𝑚𝑚𝑚

Hypothèses fondamentales

P
Nlgeom = off
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Considérons un corps solide en équilibre :

(A) corps A
(B) corps B
F section plane
G centre de gravité de la section

Pj charge au point j
rj vecteur définissant le

point j d’app.de Pj

Efforts intérieurs et contraintes

La statique permet de remplacer l’action globale de (B) sur (A) par une force R et un
moment M appliqués au centre de gravité G de la section; R et M constituent le
torseur des efforts intérieurs (R, M) et ont pour valeur

• 𝐑𝐑 = ∑(𝐵𝐵)𝐏𝐏𝑗𝑗
• 𝐌𝐌 = ∑(𝐵𝐵) 𝐫𝐫𝑗𝑗 ∧ 𝐏𝐏𝑗𝑗

(A)

(B)G

F

Pj

rj

(R)

(M)
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Considérons un corps solide en équilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force

M moment

Le torseur des efforts intérieurs se 
décompose comme suit(1):

• N = effort normal = R selon Gx
• T = effort tranchant = T = Ty j + Tz k
• Mt = moment de torsion = M selon Gx
• Mf = moment de flexion = Mf = Mfy j + Mfz k

Efforts intérieurs et contraintes

(1) Les composantes d’un vecteur sont 
symbolisés par un caractère gras

z

y
xG

T
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L’action globale (R, M) de la partie (B) sur la partie (A) du solide se traduit, en vertu
de l’hypothèse de continuité, par une infinité d’actions locales, de nature élastique ou
plastique.

Autour d’un point M0 de la section F, considérons un élément de surface ∆F, sur
lequel agit une force élémentaire ∆P. La contrainte p sur cet élément de surface est
par définition la limite :

• p = lim
∆𝐹𝐹→𝑜𝑜

∆P
∆𝐹𝐹

= 𝑑𝑑P
𝑑𝑑𝐹𝐹

Définition des contraintes
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La contrainte normale sur l’élément de surface est la composante σ de p selon la
normale à F, c’est-à-dire selon l’axe x.

La contrainte tangentielle sur l’élément de surface est la composante τ de p dans le
plan de F. Elle se décompose en les contraintes tangentielles τy et τz selon les axes y
et z

L’action globale (R, M) de (B) sur (A) est égale à celle de l’ensemble des contraintes
p de la section F

• 𝐑𝐑 = ∬𝐹𝐹 𝐩𝐩 d𝐹𝐹

• 𝐌𝐌 = ∬𝐹𝐹 𝐫𝐫 ∧ 𝐩𝐩 d𝐹𝐹

Principe d’équivalence :

« L’action des forces intérieures spécifiques – ou contraintes – agissant sur une
section d’un solide en équilibre est équivalente à l’action des forces extérieures,
appliquées sur l’une ou l’autre des parties du solide séparées par la section
considérée »

Définition des contraintes
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Définition des cas particuliers d’efforts intérieurs : projection du torseur des efforts
sur les axes principaux définis sur le corps (trièdre de référence à gauche, inverse
pour le corps B)

• 𝑁𝑁 = ∬𝐹𝐹 𝜎𝜎 d𝐹𝐹 N>0 représente l’effort de traction simple ou N<0 de
compression, σ est la contrainte normale associée

• 𝑇𝑇𝑦𝑦 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 d𝐹𝐹 T est l’effort tranchant et τxy et τxz contrainte tangentielle

𝑇𝑇𝑧𝑧 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 d𝐹𝐹 selon les axes y et z sur la face de normale x

• 𝑀𝑀𝑡𝑡 = −∬𝐹𝐹 𝜏𝜏𝑧𝑧 𝑦𝑦 − 𝜏𝜏𝑦𝑦 𝑧𝑧 d𝐹𝐹 Mt est le moment de torsion

• 𝑀𝑀𝑓𝑓𝑓𝑓 = −∬𝐹𝐹 𝜎𝜎 𝑧𝑧 d𝐹𝐹 Mfy et Mfz sont les moments de flexion pure

𝑀𝑀𝑓𝑓𝑓𝑓 = ∬𝐹𝐹 𝜎𝜎 𝑦𝑦 d𝐹𝐹 (Lorsque le torseur se réduit à un moment de flexion et
à un effort tranchant, on parle de flexion simple)

Efforts intérieurs et contraintes



Chapitre 1 : Équilibre intérieur d’un solide

15

Quelles sont les forces internes au point B ?

• Trouver les réactions des supports

• Couper virtuellement la poutre au point B

• Résoudre chaque sous-système avec ∑F = 0 et ∑M = 0

Définition des efforts intérieurs

repère gauche repère droit

TB TB

VA

HA

VA

HA
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Quelles sont les contraintes internes au point B ?

• Contrainte découlant de la force normale (NB = -HA)

• Contrainte découlant de la force tangentielle (TB = VA)

• Contrainte découlant du moment de flexion (MB = -MA+ VA x AB )

Définition des efforts intérieurs

TB

VA

HA

-HA NB

VA TB

-MA MB

VA
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Respecter les conventions des signes

• Repère de coordonnée (gauche et droit)

• On dessine par exemple la force N vers l’extérieur de la coupe

• N est positive si elle soumet le système à de la traction et négative pour la
compression

• Si l’on trouve un scalaire négatif, c’est que le vecteur est dans le sens contraire de
celui dessiné.

Définition des efforts intérieurs

y / T

N

N N

N

x / N

y / T

z / M
x / N

z / M
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L’allongement ∆ d’un barreau prismatique de longueur  et de section F sous l’effet
d’une charge P est proportionnel à la charge et à la longueur, et inversement propor-
tionnel à la section et à une constante E, appelée module d’élasticité ou module de
Young , dépendant de la nature du matériau.

• ∆ = 𝑃𝑃 
𝐸𝐸 𝐹𝐹

Sous sa forme élémentaire, la loi de Hooke exprime cette linéarité entre contrainte et
allongement constatée dans la première phase de l’essai de traction de la plupart
des matériaux.

• 𝜎𝜎 = 𝑃𝑃
𝐹𝐹

= ∆


𝐸𝐸 = 𝜀𝜀 𝐸𝐸  unité 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁
𝑚𝑚𝑚𝑚2 = 𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀

On a également introduit l’allongement spécifique : 𝜀𝜀 = ∆


Constantes caractéristiques des matériaux linéaires isotropes



Chapitre 1 : Équilibre intérieur d’un solide

22

L’allongement spécifique ou relatif peut se justifier de la manière suivante :

• 𝜀𝜀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑑𝑑𝑑𝑑+𝑢𝑢 𝑥𝑥+𝑑𝑑𝑑𝑑 −𝑢𝑢(𝑥𝑥) −𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Développement en série de Taylor du premier ordre donne
• 𝑢𝑢 𝑥𝑥 + 𝑑𝑑𝑑𝑑 = 𝑢𝑢 𝑥𝑥 + 𝑢𝑢′ 𝑥𝑥 𝑑𝑑𝑑𝑑

D’où

• 𝜀𝜀 ≅ 𝑢𝑢 𝑥𝑥 +𝑢𝑢′ 𝑥𝑥 𝑑𝑑𝑑𝑑−𝑢𝑢 𝑥𝑥
𝑑𝑑𝑑𝑑

= 𝑢𝑢′ 𝑥𝑥 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

Donc finalement

• 𝜀𝜀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= ∆
0

Constantes caractéristiques des matériaux linéaires isotropes

u(x) u(x+dx)

dx+u(x+dx)-u(x)

x+dxx
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Traction sur une bande de caoutchouc de 20 cm (E = 100 MPa, µ = 0.49)

Module d’élasticité et coefficient de Poisson
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Dans le domaine de comportement linéaire du matériau, l’allongement transversal
relatif d’une dimension quelconque de la section est proportionnel, mais de signe
contraire, à l’allongement relatif longitudinal ε de l’éprouvette.

• 𝜀𝜀𝑡𝑡 = −𝜇𝜇 𝜀𝜀

Soit en introduisant la contrainte

• 𝜀𝜀𝑡𝑡 = −𝜇𝜇 𝜎𝜎
𝐸𝐸

où le facteur de proportionnalité µ (noté souvent ν dans la littérature anglo-saxonne)
est appelé coefficient de Poisson.

Module d’élasticité et coefficient de Poisson

P P



'
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La variation de volume d’une section circulaire de longueur  est donnée par

• 𝑣𝑣 = 𝑉𝑉′−𝑉𝑉
𝑉𝑉

Avec

• 𝑉𝑉 =  𝐹𝐹 = 

𝜋𝜋
4
𝐵𝐵2

• 𝑉𝑉′ = ′ 𝐹𝐹′ = 1 + 𝜀𝜀  𝜋𝜋
4

1 + 𝜀𝜀𝑡𝑡 2𝐵𝐵2

Et finalement

• 𝑣𝑣 = 𝑉𝑉′−𝑉𝑉
𝑉𝑉

= 𝑉𝑉′

𝑉𝑉
− 1 = 1 + 𝜀𝜀 1 + 𝜀𝜀𝑡𝑡 2 − 1 ≅ 𝜀𝜀 + 2𝜀𝜀𝑡𝑡 = 𝜀𝜀 1 − 2𝜇𝜇

Comme 𝑣𝑣 > 0 , alors µ ≤ ½

Que vaut le coefficient de Poisson de ces objets ? et

Module d’élasticité et coefficient de Poisson

P P



'

B'

B
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Coefficient liège µ ≈ 0

• 𝜀𝜀𝑡𝑡 = −𝜇𝜇 𝜀𝜀 = 0

• 𝑣𝑣 = 𝜀𝜀 1 − 2𝜇𝜇 ≅ 𝜀𝜀

Coefficient gomme µ ≈ ½

• 𝜀𝜀𝑡𝑡 = −𝜇𝜇 𝜀𝜀 ≅ 1
2
𝜀𝜀

• 𝑣𝑣 = 𝜀𝜀 1 − 2𝜇𝜇 ≅ 0

Que vaut le coefficient de Poisson de ces objets ? et

Module d’élasticité et coefficient de Poisson
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Matériau Désignation VSM
ρ

[kg/m3]
E

[GPa]
µ
[−]

σE

[MPa]
σB

[MPa]
εB

[%]
Α

[10-6/°C]

Aciers de construction S 235 (Ac37-2) 7850 210 0,27 220 400 25 12

E 295 (Ac50-2) 7850 210 0,27 280 540 19 12

Ac50-2K (étiré à froid) 7850 210 0,27 410 720 8 12

Aciers inoxydables X10CrNiS18 9 7900 200 0,30 200 600 35 16

X20Cr13 7900 200 0,30 550 850 12 16

Fonte grise GG-25 7200 100 0,25 – 2001 1 10

Aluminium EN AW-Al 99.5 O 2700 69 0,33 25 80 30 24

Alliages d’aluminium EN AW-Al MgSi T6 2700 70 0,33 250 280 10 23

EN AW-Al Zn4.5Mg1 T62 2770 73 0,33 320 390 9 23

EN AW-Al Cu4Mg1 T63 2790 72 0,33 570 630 9 23

Cuivre recuit – 8900 120 0,35 40 210 50 17

Alliages cuivre-zinc4 G-CuZn33Pb2 (coulé) 8500 80 0,34 50 180 55 18

Module d’élasticité et coefficient de Poisson
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Renfort Diamètre 
[µm]

ρ
[kg/m3]

E
[GPa]

µ1
[−]

G
[GPa]

σB

[MPa]
εB

[%]
α

[10-6/°C]

Verre E 16 2600 74 0.25 30 2500 3.5 5

Verre R 10 2500 86 0.2 30 3200 4 3

Carbone HM 6.5 1800 390 0.35 20 2500 0.6 0.8

Carbone HR 7 1750 230 0.3 50 3200 1.3 0.2

Kevlar 49 12 1450 130 0.4 12 2600 2.3 -2

Bore 100 2600 400 3400 0.8 4

Silicate d’alumine 10 2600 200 3000 1.5

Module d’élasticité et coefficient de Poisson

Matrice TD
ρ

[kg/m3]
E

[GPa]
µ
[−]

G
[GPa]

σB

[MPa]
εB

[%]
α

[10-6/°C]

Epoxyde 1200 4.5 0.4 1.6 130 2 110

Phénolique 1300 3 0.4 1.1 70 2.5 10

Polyester 1200 4 0.4 1.4 80 2.5 80

Polycarbonate 1200 2.4 0.35 60 60

Polyamide 1400 4 – 19 0.35 1.1 70 1 80
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Renfort Diamètre 
[µm]

ρ
[kg/m3]

E
[GPa]

µ1
[−]

G
[GPa]

σB

[MPa]
εB

[%]
α

[10-6/°C]

Verre E 16 2600 74 0.25 30 2500 3.5 5

Verre R 10 2500 86 0.2 30 3200 4 3

Carbone HM 6.5 1800 390 0.35 20 2500 0.6 0.8

Carbone HR 7 1750 230 0.3 50 3200 1.3 0.2

Kevlar 49 12 1450 130 0.4 12 2600 2.3 -2

Bore 100 2600 400 3400 0.8 4

Silicate d’alumine 10 2600 200 3000 1.5

Module d’élasticité et coefficient de Poisson

Matrice TP
ρ

[kg/m3]
E

[GPa]
µ
[−]

G
[GPa]

σB

[MPa]
εB

[%]
α

[10-6/°C]

PP 900 1.2 30 20 – 400 90

PPS 1300 4 65 100 60

PA 1100 2 70 200 90

PEI 1150 3.3 105 60 60

PEEK 1300 4 90 50 50
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Essence 
ρ

[kg/m3]
σcomp.

[MPa]

σtraction-long.

[MPa]

σflex-paral.

[MPa]
Elong.

[MPa]

Chêne 710 58 100 97 12500

Chataignier 620 46 128 71 8500

Frêne 720 51 145 113 12900

Hêtre 680 58 117 107 14300

Mélèze 600 53 101 93 12500

Merisier 610 49 98 96 12750

Noyer 660 63 97 117 11900

Peuplier 460 33 72 65 8800
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Rigidité d’une barre

• 𝑘𝑘 = 𝑁𝑁
∆

= 𝐹𝐹 𝐸𝐸


Application pour un matériau composite unidirectionnel

• ∆ = ∆𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∆é𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑖𝑖
𝑘𝑘𝑖𝑖

= 𝑁𝑁𝑖𝑖 
𝐹𝐹𝑖𝑖𝐸𝐸𝑖𝑖

• 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 = ∑𝑘𝑘𝑖𝑖 = 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓+𝑁𝑁é𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∆

= ∑ 𝐹𝐹𝑖𝑖𝐸𝐸𝑖𝑖


• 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑁𝑁é𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Application pour une barre de diamètre variable

• ∆𝑖𝑖 = 𝑁𝑁
𝑘𝑘𝑖𝑖

= 𝑁𝑁 𝑖𝑖
𝐹𝐹𝑖𝑖𝐸𝐸𝑖𝑖

• ∆𝑡𝑡𝑡𝑡𝑡𝑡= ∑∆𝑖𝑖=
𝑁𝑁
𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡

• 𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡 = 1
𝑘𝑘1

+ 1
𝑘𝑘2

−1

Constantes caractéristiques des matériaux linéaires isotropes

NN

Efibre
Ffibre

Eépoxy
Fépoxy

E1
F1 E2

F2

NN
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Calculer la contrainte et la force dans un long rail soudé soumis à un écart de tem-
pérature de ∆θ = ± 50 ˚C

Section F = 75 cm2

Module E = 2.1 x 1011 Pa = 210 GPa
Coeff. therm. α = 12 x 10-6 /°C

Problème 1.1 

PP



F
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Calculer les réactions RA et RB pour le système ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulières.

Problème 1.2

A B

2 m 3 m 5 m 2 m 3 m

3 kN

6 kN
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Calculer la contrainte et la force dans un long rail soudé soumis à un écart de tem-
pérature de ∆θ = ± 50 ˚C

Section F = 75 cm2

Module E = 2.1 x 1011 Pa = 210 GPa
Coeff. therm. α = 12 x 10-6 /°C

Problème 1.1 

PP



F
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Problème 1.1 

PP



F
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Calculer les réactions RA et RB pour le système ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulières.

Problème 1.2

A B

2 m 3 m 5 m 2 m 3 m

3 kN

6 kN
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Problème 1.2
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Problème 1.2



Considérons un corps solide en équilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force

M moment

Le torseur des efforts intérieurs se décompose 
comme suit(1):

• N = effort normal = R selon Gx
• T = effort tranchant = T = Ty j + Tz k
• Mt = moment de torsion = M selon Gx
• Mf = moment de flexion = Mf = Mfy j + Mfz k

Annexe III : Moment d’une aire plane
Efforts intérieurs et contraintes

(1) Les composantes d’un vecteur sont 
symbolisés par un caractère gras

z

y
x



Considérons un corps solide en équilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force

M moment

Le torseur des efforts intérieurs se décompose 
comme suit :

• 𝑁𝑁 = ∬𝐹𝐹 𝜎𝜎 d𝐹𝐹

• 𝑇𝑇𝑦𝑦 = ∬𝐹𝐹 𝜏𝜏𝑦𝑦 d𝐹𝐹 et 𝑇𝑇𝑧𝑧 = ∬𝐹𝐹 𝜏𝜏𝑧𝑧 d𝐹𝐹

• 𝑀𝑀𝑡𝑡 = −∬𝐹𝐹 𝜏𝜏𝑧𝑧 𝑦𝑦 − 𝜏𝜏𝑦𝑦 𝑧𝑧 d𝐹𝐹

• 𝑀𝑀𝑓𝑓𝑓𝑓 = −∬𝐹𝐹 𝜎𝜎 𝑧𝑧 𝑧𝑧 d𝐹𝐹 et 𝑀𝑀𝑓𝑓𝑓𝑓 = ∬𝐹𝐹 𝜎𝜎 𝑦𝑦 𝑦𝑦 d𝐹𝐹

Annexe III : Moment d’une aire plane
Efforts intérieurs et contraintes

z

y
x



• Le torseur est un outil mathématique utilisé principalement en mécanique du
solide indéformable, pour décrire les mouvements des solides et les actions
mécaniques qu'il subit de la part d'un environnement extérieur.

• Le torseur considéré dans ce chapitre contient les forces et moments de force
équivalente de la partie (B) du corps solide sur la partie (A) et vice-versa et
appliquée au centre de gravité de la surface.

• Le moment statique est une grandeur physique qui caractérise la géométrie d'une
section et se définit par rapport à un axe.

• Le moment statique d'une section de densité homogène, par rapport à un axe, est
égal au produit de l'aire de cette section par la distance de son centre de gravité à
l’axe = le moment statique d'une section de densité homogène, par rapport à un
axe passant par son centre de gravité, est nul

Annexe III : Moment d’une aire plane
Torseur des efforts et centre de gravité



Les moments du premier ordre ou moments statiques d’une aire plane F du plan Oxy
par rapport respectivement à l’origine O, à l’axe Ox et l’axe Oy se définissent de la
manière suivante

• 𝐒𝐒 = ∬𝐹𝐹 𝐫𝐫 𝑑𝑑𝑑𝑑 [m3]

• 𝑆𝑆𝑥𝑥 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑 [m3]

• 𝑆𝑆𝑦𝑦 = ∬𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑 [m3]

où r est le vecteur-lieu de l’élément d’aire dF. Relevons que les moments Sx et Sy sont
simplement les composantes du moment S

Annexe III : Moment d’une aire plane
Moment du premier ordre



La connaissance des moments statiques permet de déterminer la position s du cen-
tre d’inertie G de l’aire, ainsi que ses deux composantes ξ et η

• 𝐬𝐬 = ∬𝐹𝐹 𝐫𝐫 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝐒𝐒

𝐹𝐹
[m]

• 𝜉𝜉 = ∬𝐹𝐹 𝑥𝑥 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝑆𝑆𝑦𝑦

𝐹𝐹
[m]

• 𝜂𝜂 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝑆𝑆𝑥𝑥

𝐹𝐹
[m]

Les moments Sx et Sy sont nuls lorsque les axes passent par le centre d’inertie G (ξ =
η = 0)

Annexe III : Moment d’une aire plane
Moment du premier ordre



Annexe III : Moment d’une aire plane
Moment du premier ordre : surface rectangulaire

Intégration du moment statique par rapport à l’axe x

• 𝑆𝑆𝑥𝑥 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑 = ∫𝑦𝑦=−𝐻𝐻/2
𝐻𝐻/2 ∫𝑥𝑥=−𝐵𝐵/2

𝐵𝐵/2 𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0

Intégration du moment statique par rapport à l’axe x’

• 𝑆𝑆𝑥𝑥′ = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑 = ∫𝑦𝑦=0
𝐻𝐻 ∫𝑥𝑥′=−𝐵𝐵/2

𝐵𝐵/2 𝑦𝑦 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐵𝐵𝐻𝐻2

2

Positivions du centre de gravité par rapport x’

• 𝜂𝜂 = ∬𝐹𝐹 𝑦𝑦 𝑑𝑑𝑑𝑑

∬𝐹𝐹 𝑑𝑑𝑑𝑑
= 𝑆𝑆𝑥𝑥′

𝐹𝐹
= 𝐻𝐻

2

Approche discrète : le premier moment de l'aire est la somme des aires multipliée
par la distance du centre de gravité de cette aire à de l’axe considéré.

• 𝑆𝑆𝑥𝑥′ = ∑𝑦𝑦 𝐹𝐹 = 𝐻𝐻
2
𝐵𝐵 𝐻𝐻 = 𝐵𝐵𝐻𝐻2

2

ξ

η



• 𝑆𝑆𝑥𝑥 = ∑𝑦𝑦 𝐹𝐹 = ℎ
2
𝑏𝑏𝑏 + ℎ + 𝐻𝐻 − ℎ /2 𝐻𝐻 − ℎ 𝐵𝐵

= ℎ2𝑏𝑏
2
− ℎ2𝐵𝐵

2
+ 𝐻𝐻2𝐵𝐵

2
= 𝐻𝐻2𝐵𝐵−ℎ2 𝐵𝐵−𝑏𝑏

2

• 𝐹𝐹 = 𝐵𝐵𝐵𝐵 − ℎ 𝐵𝐵 − 𝑏𝑏

• 𝜂𝜂 = 𝑆𝑆𝑥𝑥
𝐹𝐹

• 𝑆𝑆𝑦𝑦 = ∑𝑥𝑥 𝐹𝐹 = 𝐵𝐵2𝐻𝐻−ℎ𝐵𝐵 𝐵𝐵−𝑏𝑏
2

• 𝜉𝜉 = 𝑆𝑆𝑦𝑦
𝐹𝐹
𝐵𝐵2𝐻𝐻−ℎ𝐵𝐵 𝐵𝐵−𝑏𝑏
2𝐵𝐵𝐵𝐵−ℎ 𝐵𝐵−𝑏𝑏

= 𝐵𝐵
2

Annexe III : Moment d’une aire plane
Centre de gravité et moment statique

y

x

G=?

b

B

Hhη

ξ



À part le cas très simple de certains monocristaux parfaits, la théorie ne permet que
d’expliquer les propriétés mécaniques des matériaux et non pas de les calculer.

Ces propriétés sont donc mesurées au cours des essais de matériaux, le plus
important d’entre eux étant l’essai de traction

Sous l’effet de la charge appliquée P, la section diminue et la longueur augmente.
L’allongement ∆ est mesuré par la variation de longueur d’une base initiale 0, plus
courte que la partie cylindrique de l’éprouvette

Annexe I : Propriété mécaniques des matériaux
Essai de traction



La contrainte nominale est la charge rapportée à la section initiale

• 𝜎𝜎 = 𝑃𝑃
𝐹𝐹0

(vrai seulement si σ est constant dans la section)

La contrainte réelle est la charge rapportée à la section réelle

• 𝜎𝜎′ = 𝑃𝑃
𝐹𝐹

L’allongement relatif est l’allongement ∆ rapporté à la base de mesure 0

• 𝜀𝜀 = Δ
0

Annexe I : Propriété mécaniques des matériaux
Essai de traction



Annexe I : Propriété mécaniques des matériaux
Essai de traction

phénomène de striction

https://www.youtube.com
/watch?v=RY9X_O8is-k

𝜎𝜎 =
𝑃𝑃
𝐹𝐹0

𝜎𝜎𝜎 =
𝑃𝑃
𝐹𝐹

𝐸𝐸 =
𝜎𝜎
𝜀𝜀



La grandeur de l’allongement rémanent après décharge et les points particuliers du
diagramme permettent de définir les contraintes caractéristiques suivantes :
• la limite de proportionnalité σp correspondant à la fin du domaine proportionnel

(point A);
• la limite conventionnelle de proportionnalité σ0,02 correspondant à un allongement

rémanent de 0,02 % (point B)
• la limite apparente d’élasticité; σe ou limite d’écoulement correspondant au seuil

d’écoulement plastique plus ou moins marqué du diagramme (point C);
• la limite conventionnelle d’élasticité σ0,2 correspondant à un allongement

rémanent de 0,2 % (point D)
• la résistance à la traction σB correspondant à la charge la plus élevée supportée

par l’éprouvette (point H)
• la contrainte réelle de rupture σégale au quotient de la charge par la section réelle

Fau moment de la rupture de l’éprouvette (point R').
Dans la partie rectiligne du diagramme, le rapport entre la contrainte et l’allongement
relatif est une constante appelée module d’élasticité

• 𝐸𝐸 = 𝜎𝜎
𝜀𝜀

Annexe I : Propriété mécaniques des matériaux
Essai de traction
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