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Chapitre 1 : Equilibre intérieur d’'un solide
Généralités
Ayant pour objet fondamental I'étude des corps solides déformables, la mécanique

des structures ou des matériaux se propose deux buts principaux, en general
indissolubles, le calcul :

- des efforts intérieurs ou contraintes, provoques par les forces extérieures

- des déformations entrainées par les efforts intérieurs.

La mécanique des structures, appelée naguere résistance des matéraux, poursuit un
objectif essentiellement utilitaire assurer la sécurité et le bon fonctionnement des
constructions, tout en guidant le choix des solutions les plus perforrmantes.

On est souvent conduit a des simplifications draconiennes, basées sur I'analyse de
mesures ou, quand I'experimentation est impossible, sur des comparaisons avec des
cas similaires dont la solution est connue.

La théorie de I'élasticité poursuit les mémes buts que la mécanique des materiaux,
mais par un cheminement mathématique rigoureux et sans le recours a des
raisonnements qualitatifs basés sur I'expérience.



Chapitre 1 : Equilibre intérieur d’un solide
Généralités

La theorie de I'élasticite permet seule de donner a certains résultats la généralité
nécessaire et de juger de /la valeur des hypotheses simplificatrices faites en
mécanique des matériaux

La théorie de I'élasticité et la mécanique des structures sont fondees toutes deux sur
la loi de Hooke qui suppose une proportionnalité parfaite entre contraintes et
deformations. Un corps qui suit la loi de Hooke est dit parfaitement élastique.

La mecanique des matériaux etudie egalement certains solides ne suivant pas la loi
de Hooke ou pour lesquels les contraintes dépassent les limites du comportement
élastique. Elle débouche ainsi sur la théorie de /a plasticité.

Cette théorie présente des difficultes mathématiques considérables en raison de la
non-linéarifé et surtout des phénomenes d’ Aystérese intervenant dans les lois de
comportement.

La sécurité d’'un élément de construction ne dépend pas seulement du niveau
maximum des contraintes et deformations mais encore de la facon dont ces
grandeurs varient dans le temps. Cette nouvelle préoccupation fait I'objet des
théories du fluage et de la ratigue.



Chapitre 1 : Equilibre intérieur d’'un solide
Hypotheses fondamentales

Hypothese de continuité . bien que les solide soient constitué d’atome, I'étude du
comportement a I'échelle macroscopique n’est possible gu’en considérant le
solide comme un corps continu.

Peut-on considérer les échantillons ci-dessous comme des matériaux continus?




Chapitre 1 : Equilibre intérieur d’'un solide
Hypotheses fondamentales

- Hypothese d’ homogénéité : on considérera que la matiere est homogeéne, c’est a
dire que ses proprietés mecaniques sont les mémes en tout point du solide
consideré. Dans le cas contraire on peut découper le solide en plusieurs parties
considérees comme homogenes et étudier I'interaction de ces parties entre elles

« Peut-on considérer les échantillons ci-dessous comme des matériaux
homogenes?

MICcro vs macro



Chapitre 1 : Equilibre intérieur d’'un solide
Hypotheses fondamentales

- Hypothese d'/sofropie . nous admettrons que ses propriétés méecaniques sont
identiques dans toutes les directions autour d'un point

- Peut-on considerer les exemples ci-dessous comme des matériaux isotropes 7




Chapitre 1 : Equilibre intérieur d’'un solide
Hypotheses fondamentales

- Hypothese de proportionnalité - dans un solide continu, les déformations sont liées
en tous points aux contraintes par des relations linéaires et homogenes.
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Chapitre 1 : Equilibre intérieur d’'un solide
Hypotheses fondamentales

- Hypothese des pefifes déformations : les déformations ont une influence
negligeable sur la position des points d’application ou sur la direction des forces
extérieures.
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Chapitre 1 : Equilibre intérieur d’un solide

Hypotheses fondamentales

Grande déformation d’'une poutre encastrée soumise a de la flexion

AN

D =50 mm
/=1m
E = 0.01 GPa

caoutchouc

P=40N

3
- § = 64P€4=4345mm
3ETD

~ —

u, uz
+4,3078+03
+3.048e+03
+3.589:+03
+3.230e+03

Nlgeom = off




Chapitre 1 : Equilibre intérieur d’'un solide
Efforts intérieurs et contraintes

Considérons un corps solide en equilibre :

(A) corps A

(B) corpsB

F section plane

G centre de gravité de la section

e

charge au point j
vecteur définissant le

N

point j d'app.de P,

La statique permet de remplacer 'action globale de (B) sur (4) par une force R et un
moment M appliqués au centre de gravité G de la section; R et M constituent le
forseur des efforts intérieurs (R, M) et ont pour valeur

© M= 2 AP,
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Chapitre 1 : Equilibre intérieur d’'un solide
Efforts intérieurs et contraintes
Considérons un corps solide en equilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force
M moment

Le torseur des efforts intérieurs se
décompose comme suit(:

- N = effort normal = R selon Gx
- T = effort tranchant =T=Tj+TKk
« M, = moment de torsion = M selon Gx

* M, = moment de flexion = M,=M; j+ M,k

() Les composantes d’un vecteur sont

symbolisés par un caractere gras 11



Chapitre 1 : Equilibre intérieur d’'un solide
Définition des contraintes

L'action globale (R, M) de la partie (B) sur la partie (4) du solide se traduit, en vertu
de I'hypothese de continuité, par une infinité d’actions locales, de nature élastique ou
plastique.

Autour d’'un point M, de la section F, considérons un élément de surface AF, sur
lequel agit une force élementaire AP. La contrainte p sur cet element de surface est
par définition la limite : AY

N

. o= lim AP _dP
p_AF—>oAF_dF

12



Chapitre 1 : Equilibre intérieur d’'un solide
Définition des contraintes

La contrainte normale sur I'élément de surface est la composante o de p selon la
normale a F, c’est-a-dire selon I'axe x.

La contrainte tangentielle sur I'élement de surface est la composante 7 de p dans le
plan de F' Elle se décompose en les contraintes tangentielles z, et z, selon les axes y
etz

L ’action globale (R, M) de (B) sur (4) est égale a celle de I'ensemble des contraintes
p de la section F

* R=JJ; pdF

« M= [[ (r Ap)dF
Principe d’équivalence :

« L'action des forces intérieures spécifiqgues — ou contraintes — agissant sur une
section d'un solide en équilibre est équivalente a l'action des forces extérieures,
aopliquées sur l'une ou lautre des parties du solide séparées par la section
considérée »

13



Chapitre 1 : Equilibre intérieur d’un solide

Efforts intérieurs et contraintes

Définition des cas particuliers d’efforts intérieurs : projection du torseur des efforts
sur les axes principaux définis sur le corps (triedre de référence a gauche, inverse
pour le corps B)

- N= [[, odF N>0 représente I'effort de traction simple ou N<0 de
compression, o est la contrainte normale associée
- T, = fF T, dF T est l'effort tranchant et z,, et 7 contrainte tangentielle
T, = J[, 7, dF selon les axes y et z sur la face de normale x
* My=—[[. 1,y— 1,zdF M, estle moment de torsion
* Mg, =—[[, ozdF M;, et M, sont les moments de flexion pure
Mg, = [[, oydF (Lorsque le torseur se réduit a un moment de flexion et

a un effort tranchant, on parle de flexion simple)

14



Chapitre 1 : Equilibre intérieur d’'un solide
Définition des efforts intérieurs

Quelles sont les forces internes au point B 7

- Trouver les réactions des supports

-

A

- Couper virtuellement la poutre au point B

repere gauche repére droit

- Résoudre chaque sous-systeme avec YF=0et YM =0

15



Chapitre 1 : Equilibre intérieur d’un solide
Définition des efforts intérieurs

Quelles sont les contraintes internes au point B ?

Y Np Ns
M, Ty Vg
- Contrainte decoulant de la force normale (N = -H))

o, ~— . — -~

- Contrainte découlant de la force tangentielle (T3 = V)
| . |

Contrainte découlant du moment de flexion (My = -M,+ V, X AB)

« (=)~

V, 16



Chapitre 1 : Equilibre intérieur d’'un solide
Définition des efforts intérieurs

Respecter les conventions des signes

- Repere de coordonnée (gauche et droit) /7

4 z/M
b

\" X/N x/N

]

z/

€

v/ T

- On dessine par exemple la force N vers I'extérieur de la coupe

Nhl ﬁN

) — 2

- N est positive si elle soumet le systeme a de la traction et negative pour la
compression

- Sil'on trouve un scalaire negatif, c’est que le vecteur est dans le sens contraire de
Mcelui dessine.

17
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Chapitre 1 : Equilibre intérieur d’un solide

Constantes caractéristiques des matériaux linéaires isotropes

L'allongement A/ d’'un barreau prismatique de longueur ¢ et de section F sous |'effet
d’une charge P est proportionnel a la charge et a la longueur, et inversement propor-
tionnel a la section et a une constante E, appelée module d’élasticité ou moaule de
Young , dependant de la nature du matériau.

1
P P L P
. Af:—g -t ] .
EF |
¢ Al
- >

Sous sa forme élémentaire, la /o/ de Hooke exprime cette linearité entre contrainte et
allongement constatée dans la premiere phase de 'essal de fraction de la plupart
des matériaux.

: a=§=%5=85 > unité [MPa] = ML = M rapa)

[mm?]  [mm]

On a egalement introduit I'allongement spécifique : € = Al

/
=
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Chapitre 1 : Equilibre intérieur d’'un solide
Constantes caractéristiques des matériaux linéaires isotropes

L'allongement spécifique ou relatif peut se justifier de la maniere suivante :

. e = allongement _ [dx+u(x+dx)—u(x)]-dx
- longueur initiale o dx

Développement en série de Taylor du premier ordre donne
« ulx+dx) =ulx)+u'(x)dx

D’ou

, . X  x+dx
+ dx— d | |
. g o ¥Ru dx—ulx) u'(x) = &
dx dx
Donc finalement — —
. g = allongement 4 u(x) u(x-i-d)f)

longueur initiale f_o dx+u(x+dx)-u(x)
XTU(X X )-Uu\Xx

22



Chapitre 1 : Equilibre intérieur d’'un solide
Module d’élasticité et coefficient de Poisson
Traction sur une bande de caoutchouc de 20 cm (£ = 100 MPa, u = 0.49)

23



Chapitre 1 : Equilibre intérieur d’'un solide
Module d’élasticité et coefficient de Poisson

Dans le domaine de comportement linéaire du matériau, I'allongement transversal
relatif d’une dimension quelconque de la section est proportionnel, mais de signe
contraire, a I'allongement relatif longitudinal ¢ de I'éprouvette.

° gt == _,Ll E
N i op

] |
Soit en introduisant la contrainte = b ]
e g =—y2 ‘

t = M - >
f!
g -

ou le facteur de proportionnalité u (noté souvent v dans la litterature anglo-saxonne)
est appelé coefficient de Poisson.

24



Chapitre 1 : Equilibre intérieur d’un solide

Module d’élasticité et coefficient de Poisson
La variation de volume d’une section circulaire de longueur ¢ est donnée par

Avec - B
|

+ V=(F=/(.B?

c V=L F =1+ )l S (1+¢)?B?

Et finalement

_vi-v v/

—=—-1=0+a)(1+e)—1=e+2e=e(1 —2u)

M 7

Commewv >0, alors u< 2

/’ Y
Que vaut le coefficient de Poisson de ces objets ? ' et

25



Chapitre 1 : Equilibre intérieur d’'un solide
Module d’élasticité et coefficient de Poisson

Coefficient liege u~ 0

c &g =—ue=0

c v=¢(1 -2u)=c¢

Coefficient gomme u =~ 2

1
® gtz_ﬂgggg

e v=¢(1 -2u)=0

Que vaut le coefficient de Poisson de ces objets ?

26



Matériau

Aciers de construction

Aciers inoxydables

Fonte grise
Aluminium
Alliages d’'aluminium

Cuivre recuit
Alliages cuivre-zinc4

Chapitre 1 : Equilibre intérieur d’un solide
Module d’élasticité et coefficient de Poisson

O Op
UEPa] [MPa] | [MPa]

Désignation VSM

S 235 (Ac37-2)

E 295 (Ac50-2)
Ac50-2K (étiré a froid)
X10CrNiS18 9
X20Cr13
GG-25
EN AW-A[99.5 0
EN AW-Al MgSi T6
EN AW-Al Zn4.5Mg1 T62
EN AW-Al Cu4Mg1 T63

G-CuZn33Pb2 (coulé)

7850
7850
7850
7900
7900
7200
2700
2700
2770
2790
8900
8500

210
210
210
200
200
100
69
70
73
72
120
80

0,27
0,27
0,27
0,30
0,30
0,25
0,33
0,33
0,33
0,33
0,35
0,34

280
410
200
550
25
250
320
570
40
50

540
720
600
850
2001
80
280
390
630
210
180

27



Chapitre 1 : Equilibre intérieur d’'un solide
Module d’élasticité et coefficient de Poisson

G

[GPa]

OB

ép

Renfort

Verre E 16
Verre R 10
Carbone HM 6.5
Carbone HR 7

Kevlar 49 12
Bore 100
Silicate d’alumine 10

Matrice TD
Epoxyde 1200
Phénolique 1300
Polyester 1200
Polycarbonate 1200

Polyamide 1400

2.4
4-19

390
230
130
400
200

[-]
0.4
0.4
0.4

0.35
0.35

1.6
1.1
1.4

1.1

30
30
20
50
12

[MPa]

2500
3200
2500
3200
2600
3400
3000

[7]

3.5
4
0.6
1.3
2.3
0.8
1.5

0.8
0.2

28



Chapitre 1 : Equilibre intérieur d’'un solide
Module d’élasticité et coefficient de Poisson

G

[GPa]

Renfort

Verre E 16
Verre R 10
Carbone HM 6.5
Carbone HR 7

Kevlar 49 12
Bore 100
Silicate d’alumine 10

Matrice TP
PP 900
PPS 1300
PA 1100
PEI 1150
PEEK 1300

390
230
130
400
200

30
30
20
50
12

30
65
70
105
90

[MPa]

2500
3200
2500
3200
2600
3400
3000

[%]

20 - 400
100
200
60
50

0.8
0.2
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Chapitre 1 : Equilibre intérieur d’un solide

0-traction-long. O-ﬂex-para/.

E
SSSIEE [MPa] [MPal]

Chéne 710 58 100 97 12500
Chataignier 620 46 128 71 8500
Fréne 720 51 145 113 12900
Hétre 680 58 117 107 14300
Méleze 600 53 101 93 12500
Merisier 610 49 98 96 12750
Noyer 660 63 97 117 11900
Peuplier 460 33 72 65 8800

30



Chapitre 1 : Equilibre intérieur d’'un solide
Constantes caractéristiques des matériaux linéaires isotropes

Rigidite d’'une barre
N _FE
oAl

Application pour un matériau composite unidirectionnel

. _ _ _N; N/ o P
k _ k _ Nfibre"'Népoxy _ ZFiEi
© kot =X ki = — N | =——> N
Al /
* Niot = Nfibre + Népoxy
Application pour une barre de diametre variable P
1
_ N _NY; /[ F, E,
Aly = ki FiE; &
N
¢ M= T A= N — ( ( — N
tot

-1
1 1
o= (3 45)

31



Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.1

Calculer la contrainte et la force dans un long rail soudé soumis a un écart de tem-
pérature de A@ = +50 °C

Section F =75cm?
Module E=21x10"Pa =210 GPa
Coeff. therm. a=12x10%6/°C

32



Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

Calculer les réactions R, et R, pour le systeme ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulieres.

o]

2m 3m 5m 2m 3m

33
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Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.1

Calculer la contrainte et la force dans un long rail soudé soumis a un écart de tem-
pérature de A@ = +50 °C

Section F =75cm?
Module E=21x10"Pa =210 GPa
Coeff. therm. a=12x10%6/°C
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Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.1

37



Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

Calculer les réactions R, et R, pour le systeme ci-dessous, puis représenter les
diagrammes des efforts intérieurs N (effort normal), T (effort tranchant), et M
(moment fléchissant), en indiquant les valeurs particulieres.

o]

2m 3m 5m 2m 3m
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Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

Al A

39



Chapitre 1 : Equilibre intérieur d’un solide
Probleme 1.2

Al A

40



Annexe lll : Moment d'une aire plane
Efforts intérieurs et contraintes

Considérons un corps solide en equilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force
M moment

Le torseur des efforts intérieurs se décompose

comme suit™:
- N = effort normal = R selon Gx ’
- T = effort tranchant =T=T,j+TKk

« M, = moment de torsion = M selon Gx
* M, = moment de flexion = M,=M; j+ M,k

() Les composantes d’un vecteur sont
symbolisés par un caractere gras



Annexe lll : Moment d'une aire plane
Efforts intérieurs et contraintes

Considérons un corps solide en equilibre :

(A) corps A
F section plane
G centre de gravité de la section

R force
M moment

Le torseur des efforts intérieurs se décompose
comme suit :

« N= [[, odF
- T,= [[, tydF et T,= [[. t,dF

. Mt=—ffF T,y — Ty zdF

* Mgy, =—[[. o(z) zdF et My, = ffF a(y) y dF




Annexe lll : Moment d'une aire plane
Torseur des efforts et centre de gravité

- Le torseur est un outil mathématique utilisé principalement en mécanique du
solide indéformable, pour décrire les mouvements des solides et les actions
mécaniques qu'il subit de la part d'un environnement extérieur.

- Le torseur considéré dans ce chapitre contient les forces et moments de force
équivalente de la partie (B) du corps solide sur la partie (A) et vice-versa et
appliquée au centre de gravité de la surface.

- Le moment statique est une grandeur physique qui caractérise la géométrie d'une
section et se définit par rapport a un axe.

- Le moment statique d'une section de densite homogene, par rapport a un axe, est
égal au produit de l'aire de cette section par la distance de son centre de gravité a
I'axe = le moment statique d'une section de densité homogene, par rapport a un
axe passant par son centre de gravité, est nul



Annexe lll : Moment d'une aire plane

Moment du premier ordre

Les moments du premier ordre ou moments statiques d’'une aire plane F du plan Oxy
par rapport respectivement a I'origine O, a I'axe Ox et I'axe Oy se définissent de la
maniere suivante

. S=ff, rdF m? ")
° — [ 3]
Sx = [l v dF m” Gz
- 7 o dF(x, )
. Sy—ffodF (M3 s r/@
/
n y
0 & X >x

ou r est le vecteur-lieu de I'élément d'aire dF. Relevons que les moments S et S, sont
simplement les composantes du moment S '




Annexe lll : Moment d'une aire plane

Moment du premier ordre

La connaissance des moments statiques permet de determiner la position s du cen-
tre d’inertie G de I'aire, ainsi que ses deux composantes et

S

/I dF

ngfF xdF=

fly aF

JIp dF

Les moments S, et S, sont nuls lorsque les axes passent par le centre d'inertie G (&

n=0)

_ /lz rdF _

= ffF y dF =

S

Sy

F

Sx

F

[m]

[m]

[m]

YA

. |




Annexe lll : Moment d'une aire plane

Moment du premier ordre : surface rectangulaire
Intégration du moment statique par rapport a I'axe x oy

H/2 B/2
¢ Sx — ffp de — fy:—H/z fxz_B/zydxdy — O

Intégration du moment statique par rapport a I'axe x’

A\

H (B/2 BH?
° le — ffF y dF = fy=0 fx’=—B/2y dXdy = T T

Positivions du centre de gravité par rapport x’ Y i

Y.

0’

A

_ g ydF _ Sy _H

ffF dF F 2

Approche discrete : le premier moment de l'aire est la somme des aires multipliee
par la distance du centre de gravité de cette aire a de I'axe considere.

2
Su=%yF=2BH=""

| . |




Annexe lll : Moment d'une aire plane
Centre de gravité et moment statique

Sx=2yF=§bh+(h+(H—h)/2) (H — h)B

Y
__h*b  h®B N H?B _ H?B-h?*(B-b) A
2 2 2 2
B >
F =BH — h(B —Db)
N\
_ Sx
n== \
G=?
[ ]
B2H—hB(B—b) T, 1, | &
Sy = Zx F = n
2
2
- Sy B*H-hB(B~b) _ B )
F 2BH-h(B-b) 2
D S——




Annexe | : Propriété mécaniques des matériaux
Essai de traction

A part le cas tres simple de certains monocristaux parfaits, la théorie ne permet que
d’expliquer les propriétés mecaniques des materiaux et non pas de les calculer.

Ces proprietés sont donc mesurées au cours des essais de matériaux, le plus
important d’entre eux étant I'essar de traction

Sous l'effet de la charge appliquée P, la section diminue et la longueur augmente.
L’allongement A/ est mesuré par la variation de longueur d’'une base initiale 4,, plus

courte que la partie cylindrigue de I'éprouvette




Annexe | : Propriété mécaniques des matériaux
Essai de traction

La contrainte nominale est la charge rapportée a la section initiale

P

© o= (vrai seulement si o est constant dans la section)
0

La contrainte réelle est la charge rapportée a la section réelle

° O":E
F

L’ allongement relatifest I'allongement A/ rapporté a la base de mesure ¢,

E=€—o




Annexe | : Propriété mécaniques des matériaux

B

phénomene de striction

Essai de traction

|
|
g
[
|
|
|

https://www.youtube.com
/watch?v=RY9X_0O8is-k

(o)

0,2%




Annexe | : Propriété mécaniques des matériaux
Essai de traction

La grandeur de I'allongement remanent apres décharge et les points particuliers du
diagramme permettent de déefinir les contraintes caracteéristiques suivantes :

- la limite de proportionnalite o, correspondant a la fin du domaine proportionnel
(point A);

- la limite conventionnelle de proportionnalite oy, correspondant a un allongement
remanent de 0,02 % (point B)

- la limite apparente d’élasticité, o, ou limife d'écoulemenrt correspondant au seuil
d’écoulement plastique plus ou moins marqué du diagramme (point C);

- la /imite conventionnelle d‘élasticite o,, correspondant a un allongement
rémanent de 0,2 % (point D)

- la résistance a la traction oy correspondant a la charge la plus élevée supportée
par I'éprouvette (point H)

- la contrainte réelle de rupture o,,,, au quotient de la charge par la section reelle
Fau moment de la rupture de I'éprouvette (point R').

Dans la partie rectiligne du diagramme, le rapport entre la contrainte et I'allongement
relatif est une constante appelée module d’elasticité

(0]
CET J
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